

SYNTHESIS OF WATER SOLUBLE MOLECULAR RECEPTOR FROM CALIX[4]ARENE-BIS-CROWN-6

Laurence Nicod, Stéphane Pellet-Rostaing, Frédéric Chitry, Marc Lemaire*

Institut de Recherche sur la Catalyse, Laboratoire de Catalyse et Synthèse Organique, Université Claude Bernard, Lyon I, CPE, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France.

Henri Barnier, Véronique Fédérici

CEA de Cadarache, DESD/SEP/LPTE, 13108 Saint Paul lez Durance Cedex, France.

Received 14 September 1998; accepted 13 October 1998

Abstract: Hydrosoluble Calix[4]arenes-bis-crown-6 2a, 3a and 3b have been synthesised in two steps via formylation and chlorosulfonylation of 1. Cs⁺- Ligand interactions were studied in aqueous media by UV-Visible analysis and showed a good affinity between receptor 2a and the caesium ion. © 1998 Published by Elsevier Science Ltd. All rights reserved.

Calixarenes have aroused considerable interest as useful building blocks for the synthesis of receptors¹ for cationic, anionic, and neutral molecules. Some recent studies have been devoted more specificly to the highly selective recognition properties of calixcrowns of alkali and alkali-earth metal cations. This is due to the nature, the size and the position of grafted polyglycolic chains^{2a-g}. For example, Vicens and coworkers^{2e} have synthesised a series of calixarene bis-crowns in an 1,3-alternate conformation which constitutes a new family of lipophilic basket bowls for the selective complexation of caesium ions. Those receptors containing 6 oxygen atoms in the ether chain were widely studied for their abilities to extract selectively caesium from nuclear waste, by the supported liquid membrane (SLM's) technique^{2e-f}.

In a recent report³, we have described the selective complexation-separation Cs⁺/Na⁺ by nanofiltration. This alternative method gave exellent results with calix[4]resorcinarene. In order to test the potential of calix[4]arene bis-crown ligands in this field, it would be desirable to have water soluble derivatives.

For this reason, we report here the synthesis and the preliminary caesium complexing results of water soluble calix[4] arene bis-crown-6.

The starting calixarene bis-crown-6 1 was synthesised as described in the literature^{2e} and each water soluble derivative 2a and 3a-b was obtained in two steps by either formylation or chlorosulfonylation⁴. As related in the literature^{5a-b} about the exhaustive formylation of calix[4]arene, 1 was treated with excess of Cl₂CHOCH₃ and TiCl₄ to give the *distal* formylated calixarene 2 as a unique product in 88% yield.

Fax: 04-72-43-14-08 E-mail: Marc.Lemaire@univ-lyon1.fr

2 was subsequently converted into the bis acid analogue 2a in 79% yield by oxidation with sulfamic acid and sodium chlorite.

The structure of 2 and the *distal* position of the fixed aldehyde functionality on 1 were characterised by the well defined ¹H-NMR spectrum which showed an AB system for the ArCH₂Ar (3.83 - 3.96 ppm). Furthermore a singlet (7.68 ppm), doublet (7.12 ppm) and a multiplet (6.85 - 6.92 ppm) in the aromatic region were obtained corresponding to substituted and unsubstituted phenolic moieties. The ¹³C-NMR confirmed the C4v symetry of this compound by showing only one absorption for the bridging methylene carbon at 37.81 ppm, which is typical for all *anti* oriented aromatic nuclei⁶. For derivative 2a, the ¹H-NMR and ¹³C-NMR spectra displayed similar resonance signals which were nevertheless broader than for 2. Mass spectroscopy (FAB and electrospray) and microanalyses were in accordance with the expected structures.

i) TiCl₄, Cl₂CHOCH₃, 40°C; ii) NH₂SO₃H, NaClO₂, r.t.

Calixarene bis-crown-6 1 was also tetra-chlorosulfonylated to 3 by chlorosulfonic acid in CHCl₃ at -10°C (54% yield) according to the chlorosulfonylation of calixarene described in the literature⁷· 3 was subsequently converted to 3a by hydrolysis of the chlorosulfonyl groups in pyridine/water, followed by neutralisation with NaHCO₃ (94% yield).

By the route used for the access to sulfonamide calixarenes⁸, reaction of **3** with diethanolamine in DMSO gave quantitatively tetrasulfonamide **3b** (86% isolated).

The exhaustive "upper rim" functionnalisation of 1 conserved the magnetic equivalence of the bridged methylene and the aromatic protons which was characterised by two singlets in ¹H-NMR for the compounds 3, 3a, 3b. Two triplets typical of the diethanolamine methylene protons were observed for 3b at 3.25 and 3.89 ppm.

Because substituted calix[4]arene-bis-crowns-6 **2a** and **3a-b** were soluble in neutral or basic aqueous media, their caesium complexing properties could be studied by UV-Visible analyses in these conditions. Stability constants $K_{Cs/L}$ of caesium-ligand interactions (table 1) could be evaluated by using the Foster-Hammick-Wardley procedure⁹. Thus, absorption changes of UV ligand spectra were measured as Cs⁺ was progressivly added to an aqueous solution containing a fixed amount of ligand. Interactions of **2a**, **3a** and **3b** with Cs⁺ were respectively studied at 250, 235 and 268 nm. A hypochromic effect was observed for

2a and 3a, whereas a hyperchromic one was detected for 3b. However only 2a and 3a gave significantly results for allowing a $K_{Cs/L}$ and ΔG° calculation for a 1:1 ratio Cs/L.

$$1 \frac{i}{54\%} Clo_{2}S$$

$$R = N(CH_{2}CH_{2}OH)_{2}$$

$$O O O SO_{2}Na O SO_{3}Na O SO_{3}$$

i) CISO₃H, CHCl₃, -10°C; ii) pyridine/H₂O, NaHCO₃, r.t. iii) HN(CH₂CH₂OH)₂, DMSO, r.t.

Ligand	[] (mol.L ⁻¹)	рН	λ (nm)	K _{Cs/L} (no unit)	ΔG° (kJ.mol ⁻¹)
2a	2.5 10 ⁻⁵	11	250	340,000	- 31.5
3a	4 10 ⁻⁵	11	235	30,000	- 25.5
3b	1.6 10 ⁻⁵	7	268	-	-

table 1

Further research on the complexation properties of **2a** is under current investigation by the nanofiltration-complexation technique³ and will be presented in due course.

Acknowledgment

This research was financially supported by COGEMA.

references and notes

- 1 C.D. Gutsche, Calixarene, 'Monographs in Supramolecular Chemistry', Cambridge, 1989, Vol. 1; Calixarene: aVersatile Class of Macrocyclic Compounds, ed. J. Vicens and V. Bömher, Kluwer, Dordrecht, 1991; V. Bömher, Angew. Chem. Int. Ed. Engl., 1995, 34, 713.
- a) M. Saadioui, Z. Asfari, J. Vicens, N. Reynier and J.-F. Dozol, J. ncl. Phenom., 1997, 28, 223-244. b) B. Pulpoka, Z.Asfari, J. Vicens, J. of Incl. Phenom., 1997, 27, 21-30. c) W. Aeungmaitrepirom, Z. Asfari, J. Vicens, Tet. Lett., 1997, 38(11), 1907-1910. d) M. Saadioui, Z. Asfari, J. Vicens, Tet. Lett., 1997, 38(7), 1187-1190. e) Z. Asfari, C. Bressot, J. Vicens, C. Hill, J.-F. Dozol, H. Rouquette, S. Eymard, V. Lamare, T. Tournois, Anal. Chem., 1995, 67, 3133-3139. f) Z. Asfari, M. Nierlich, P. Thuery, V. Lamare, J.-F. Dozol, M. Leroy, J. Vicens, Anal.Quim. Int. Ed., 1996, 260-266. g) A. Arduini, L. Domiano, A. Pochini, R. Ungaro, F. Uggozoli, O. Struck, W. Verboom, D.N. Reinhoudt, Tetrahedron, 1997, 53, 3767-3776. h) H. Ihm, H. Kim, K. Paek, J. Chem. Soc, Perkin Trans.1, 1997, 1997-2003.

- 3 E. Gaubert, H. Barnier, L. Nicod, A. Favre-Reguillon, J. Foos, A. Guy, C. Bardot, M. Lemaire, Sep. Sci. Technol., 1997, 32, 2309-2320.
- 2: To a solution of 1,1'-dichloromethylether (15.6 g, 135.6 mmol) in 50 ml of CHCl₃ at 40°C were added dropwise 1 (1.5 g, 1.81 mmol) in 50 ml of CHCl₃ and tin chloride (12.87 g, 67.8 mmol) in 50 ml of CHCl₃. The reaction mixture was stirred for 1h. and after cooling, treated with cold water (300 ml). The organic layer was separated, washed with water (3 x 200 ml) until pH 7, with satured NaCl solution and dried over MgSO₄. The solvent was evapored to dryness and 2 was obtained as a colourless foam (1,41 g, 88%). A sample was recristallised in CH₂Cl₂-heptane for analyses. M. P.: 121°C; IR (KBr): 1688 (C=O); ¹H-NMR (CDCl₃): 3.17-3.70 (m, 40 H, OCH₂CH₂O); 3.83-3.96 ('q', AB, J_{AB}= 9.03, 4 ArCH₂Ar); 6.85-6.92 (m, 2ArH); 7.12 (d, J=7.4, 4 ArH); 9.93 (s, 2 CHO); ¹³C-NMR (CDCl₃): 37.81 (ArCH₂Ar), 69.33, 69.61, 70.31, 70.80, 70.94 (OCH₂CH₂O); 122.9, 129.8, 130.2, 131.6, 132.3 (ArH); 133.0, 133.6, 134.1, 134.8, 135.2, 156.5, 162.3 (ArC), 191.7 (CHO); m/z (FAB⁺ in NBA): 885.5 ([M + H]⁺); C₅₀H₆₀O₁₄, 0.15CH₂Cl₂, 0.45 C₇H₁₆ (942.86): calc. C 67.90, H 7.11, O 23.76; found C 68.14, H 6.83, O 23.76.
 - 2a: 2 (0.5 g, 0.565 mmol) was dissolved in 80 ml of CHCl₃/acetone (1:1). NaClO₂ (0.171 g, 1.89 mmol) and NH₂SO₃H (0.215 g, 2.21 mmol) was added and the mixture was stirred for 24h. at r.t.. After evaporation of solvents, the residue was triturated in HCl 10% (100 ml). The resulting brownish precipitate was filtrered, washed with water nd recristallised in MeOH-H₂O to give pur 2a as a light yellow powder (0.409 g, 79%). M.P.: 204-206°C; UV (H₂O/NaOH): 250 (17600), 275 (16000); IR (KBr): 3421, 1706 (COOH); ¹H-NMR (CD₃OD): 3.17-3.65 (m, 40H, OCH₂CH₂O); 3.80-4.10 (br 'q', AB, 4 ArCH₂Ar); 6.86-6.90 (br m, 2 ArH); 7.10 (br s, 4 ArH); 7.81 (br s, 4 ArH); ¹³C-NMR (CD₃OD): 38.51 (ArCH₂Ar); 69.71, 69.92, 70.94, 71.41, 71.60 (OCH₂CH₂O); 125.4, 129.9, 130.6, 131.6, 132.6 (ArH); 133.7, 133.9, 134.4, 135.6, 136.4, 155.8, 161.4 (ArC); 169.7 (COOH); m/z (ES⁻): 915.2 ([M H]⁻) (FAB⁺, KOH): 993.4 ([M + 2K H]⁺); 955.4 ([M + K]⁺); C₅₀H₆₀O₁₆, 0.75 CHCl₃, 0.5 H₂O (1015.55): calc. C 60.02, H 6.13, O 25.99; found C 59.97, H 6.20, O 26.09.
 - 3: To a solution of 1 (2.6 g, 3.14 mmol) in CHCl₃ (40 ml) was added dropwise HSO₃Cl (8.34 ml, 126 mmol) at -10 °C. When the addition was complete, the reaction mixture was stirred for 3h. at r.t.. The solution was poured into an ice-water solution (100 ml) and to the resulting suspension was added CHCl₃ (150 ml). The organic layer was separated and supplementar material was extracted from aqueous layer with CHCl₃ (2 x 100 ml). The organic layers were rassembled, dried over MgSO₄ and concentrated. By addition of isopropanol (150 ml), pur 3 was collected by filtration as a white powder (2.08 g, 54%). M.P.: >260°C; IR (KBr): 1372 (SO₂Cl); ¹H-NMR (CDCl₃): 3.07 (t, J=6.3, 8H, OCH₂CH₂O); 3.45-3.69 (m, 32 H, OCH₂CH₂O); 4.09 (s, 8H, ArCH₂Ar); 7.85 (s, 8 ArH); ¹³C-NMR (CDCl₃): 37.58 (ArCH₂Ar); 68.82, 70.32, 70.51, 70.94 (OCH₂CH₂O); 128.5 (ArH); 134.3, 138.8, 161.7 (ArC); m/z (FAB+, NBA + LiCl): 1229.1 ([M + Li]⁺); C₄₈H₅₆O₂₀S₄Cl₄, 2 H₂O (1259.02): calc. C 45.79, H 4.80, O 27.96; found C 45.58, H 4.81, O 28.42.
 - 3a: 3 (1.6 g, 1.31 mmol) was dissolved at room temperature in pyridine (8 ml), then water (1 ml) was added and the reaction mixture stirred for 2h.. The solvent was evaporated and water (1 ml) was added. The brownish solution was titrated to neutrality with a solution of 10% NaHCO₃ and acetone was added. The resulting precipitate was filtered and 3a (1.54 g, 94%) was obtained after recristallisation in acetone-water as a white powder. M.P.: >260°C; UV (H₂O): 235 (23200), 267 (2000); IR (KBr): 1050, 1190 (Ar-SO₃-); ¹H-NMR (D₂O): 3.09 (t, J=6.6, 8H, OCH₂CH₂O); 3.52-3.73 (m, 32H, OCH₂CH₂O); 4.13 (s, 4 ArCH₂Ar), 7.64 (s, 8 ArH); ¹³C-NMR (D₂O): 37.49 (ArCH₂Ar); 68.81, 68.91, 69.36, 70.29 (OCH₂CH₂O); 126.9 (ArH); 134.3, 138.1, 159.1 (ArC); m/z (FAB⁺): 1273.4 ([M + Na]⁺); 1237.5 ([M + H]⁺); $C_{48}H_{56}O_{24}S_4Na_4$, 8 H_2O (1379.99): calc. C 41.70, H 5.25; found C 41.69, H 4.99.
 - 3b: To a solution of 3 (2 g, 1.63 mmol) in DMSO (30 ml) was added diethanolamine (1.72 g, 16.3 mmol) and the mixture was stirred at r.t. for 24h.. After addition of isopropanol (150 ml), the resulting viscous material was triturated and the solvent was removed by suction. This treatement was repeated twice and 3b (2.1 g, 86%) was obtained as a colourless hygroscopic foam. A small sample of 3b was recristallised in MeOH-isopropanol for analyses. M.P.: 155°C; IR (KBr): 3500 (OH); ¹H-NMR (D₂O): 3.09 (t, J=6.8, 8H, OCH₂CH₂O); 3.25 (t, J=5.2, 16H, NCH₂); 3.53-3.74 (m, 32H, OCH₂CH₂O); 3.89 (t, J=5.2, 16H, CH₂OH); 4.29 (s, 4 ArCH₂Ar); 7.64 (s, 8 ArH); ¹³C-NMR (D₂O): 37.56 (ArCH₂Ar); 49.39, 57.04 (NCH₂CH₂OH); 68.92, 69.75, 70.59 (OCH₂CH₂O); 126.8 (ArH); 134.4, 138.1, 159.2 (ArC); C₆₄H₉₆O₂₈N₄S₄, 9 H₂O, 0.5 DMSO (1698.87): calc C 45.95, H 6.94, O 35.31, N 3.29; found C 45.95, H 6.81, O 35.08, N 3.18.
- 5 a) A. Arduini, G. Manfredi, A. Pochini, A.R. Sicuri, R. Ungaro, J. Chem. Soc. Chem. Commun., 1991, 936-937. b) A. Arduini, S. Fanni, G. Manfredi, A. Pochini, R. Ungaro, A.R. Sicuri, F. Uggozoli, J. Org. Chem., 1995, 60, 1448-1453.
- 6 C. Jaime, J. de Mendoza, P. Prados, P. M. Nieto, C. Sanchez, J. Org. Chem., 1991, 56, 3372-3376.
- 7 Y. Morzherin, D. M. Rudkevich, W. Verboom, D. N. Reinhoudt, J. Org. Chem., 1993, 58, 7602-7605.
- 8 M. H.-B. Grote Gansey, W. Verboom, D. N. Reinhoudt, Tet. Lett., 1994, 35(38), 7127-7130.
- 9 R. Foster, D. L. Hammick, A. A. Wardley, J. Chem. Soc., 1953, 3817-3820.